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Symbols

Ab frequency factor for backward reaction

Af frequency factor for forward reaction

cp speci�c heat at constant pressure

D di�usion coe�cient

E activation energy

hct heat of combustion of reaction

hi enthalpy of species i

hoi heat of formation of species i

Ji ;j Jacobian of reaction i with respect to species j

k wave number

Le Lewis number

M molecular weight

m; � activation parameters

Pr Prandtl number

p pressure

R universal gas constant

Re Reynolds number

s stoichiometric ratio

T temperature

Tr reference temperature, which is the same as initial temperature

t time

u streamwise velocity

v transverse velocity

w wavelength

x streamwise coordinate

Yi mass fraction of species i

y transverse coordinate

z product of density and velocity u

�f ame thickness

� conductivity

� laminar viscosity

� density

� nondimensional temperature

� disturbance function
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000

volumetric reaction rate

iii



Subscripts:

ad adiabatic

f ame

i species: 1, fuel; 2, oxidizer; 3, product; and 4, inert

o total

r reference condition

s steady state

iv



Abstract

This numerical study of the stability of laminar ames speci�cally

addresses the dependence of stability on �nite-rate chemistry with

low activation energy and variable thermodynamic and transport

properties. The calculations show that activation energy and details

of chemistry play a minor role in altering the linear neutral stability

results from asymptotic analysis. Variable speci�c heat makes a

marginal change to the stability; variable transport properties, on the

other hand, tend to substantially enhance the stability from a critical

wave number of about 0.50 to 0.20. Also, the e�ects of variable

properties tend to nullify thee�ects of nonunity Lewis number. When

the Lewis number of a single species is di�erent from unity, as is true

in a hydrogen-air premixed ame, the stability results remain close

to that of unity Lewis number.

Introduction

The linear stability of premixed ames has been studied by a large number of workers.
Starting with Landau (1944) and Darrieus (1945), a number of workers, including Margolis,

Matkowsky, Sivashinsky, and Clavin (see Clavin 1985 for a list of references), have contributed
to this research. A scholarly review appears in Clavin (1985). Landau and Darrieus treated the

one-dimensional ame as a thin discontinuity across which a density jump occurs. The dominant
parameter that a�ects the stability is the disturbance wavelength in a direction normal to the
direction of propagation. The investigations were conducted to �nd if such a lateral disturbance

of wavelength w (or wave number k) was ampli�ed by the ow �eld, and the result was that
the ame is unstable to all wave numbers. This result was puzzling for a long time because

stable laminar ames could be set up in laboratories. Only recently have e�ects of nonnormal
di�usion, curvature, and buoyancy on the ame stability been shown to reect realistic features
of stability. Studies by Sivashinsky, Matkowsky, and others included the e�ects of nonnormal

di�usion (thermal and mass di�usion being unequal), �rst with low heat release and then with
signi�cant heat release. The analyses of Pelce and Clavin (1982), Matalon and Matkowsky

(1982), and Frankel and Sivashinsky (1982) consider the limit of wave number tending to zero.
The nondimensionalizations used are di�erent in these analyses, and the analysis of Pelce and
Clavin is more general. One of the objectives of the three analyses conducted independently was

to demonstrate the weak inuence of viscosity in relation to conductivity and di�usivity. These
studies obtain the dispersion relation (a result of the stability analysis giving the relationship

between the growth rate and wave number) as ! = a(q)k � b(q; Le)k2, where ! is the growth
factor, k the wave number, and a and b are coe�cients depending on the temperature ratio

Tad=To and Le = D�cp=�, the ratio of mass to thermal di�usivities. The expressions for a

and b obtained by Matalon and Matkowsky (1982) as well as Frankel and Sivashinsky (1982) do
not match (after appropriate transformations) even for a critical wave number. The numerical

di�erences are not large in the range of parameters of interest, and the values predicted for
a critical wave number are the same for Le = 1. Results based on systematic analysis and

numerical integration of disturbance equations have been made by Jackson and Kapila (1984).
Their numerical calculations have spanned the complete range ofwave numbers, and they con�rm
the earlier results in the appropriate limits. They deduce from such analysis the inuence

of exothermicity and buoyancy on ame stability (Jackson and Kapila 1986). Increase in
exothermicity is shown to destabilize the ame, and buoyancy is shown to stabilize the ame.

All these studies are analytical in nature and have treated the high activation energy limit.

In these studies the steady-state pro�les for temperature, velocity, and mass fractions are
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exponential in character and the reaction zone asymptotes to a plane. A typical plot from
the calculations of Jackson and Kapila (1984) is shown in �gure 1 for the largest parameter of

exothermicity of Jackson and Kapila and without buoyancy. The parameter of exothermicity
corresponds to a ame temperature six times the cold reactant temperature. The abscissa in

�gure 1 is l =
�
1
Le � 1

�
�. In this �gure,m and � are proportional to the activation energy, and E

for the �nite-rate chemistry models is discussed later. The results obtained are forE=RTad ! 1

and for Lewis number not far from unity. It can be seen that at l = 0, corresponding to Le = 1,

the unstable wave numbers are restricted to less than 0.36. And as Le increases, the range of
unstable wave numbers increases. Values of Lewis numbers of some species go up to 2 in the case
of H2-air systems. For Le = 2.0 and E=RTad = 4 for the H2-air system, one obtains l = �2 and

kcrit = 0:6. Thus the unstable wave number is increased substantially. At Le = 1, the unstable
wavelengths are larger than 18 (= 2�=kcrit) times the ame thickness. The ame thickness is
de�ned in these studies by �f = �r=cp;r�rur , where �r is the reference conductivity, cp;r is the

speci�c heat, �r is the reference density, and ur is the reference ame speed. For cold reference
conditions, this gives

�f �
0:052 W=m-K

(1390 J=kg-K� 0:85 kg=m3
� 1:8 m=s)

� 0:0000244 m (0:0244 mm)

For hot reference conditions, conductivity is almost 3.7 times the cold value and speci�c heat is
25 percent higher. The product of density and ame speed is constant for the respective cold
and hot values, and �f � 0:072 mm. Therefore, the lateral wavelength causing instability is 18�f,

about 1.3 mm. In the above results, the principal controlling factor is hydrodynamics. The role
of di�usion seems signi�cant only for Lewis number signi�cantly di�erent from unity.

As stated earlier, in all the above analyses, the activation energy is treated as large. The
overall activation energy has been estimated by Fenn andCalcote (1957) to be 16 kcal/g-mole for

the H2-air system and28 to 30 kcal/g-mole for many stoichiometric hydrocarbon air systems. At
typical ame temperatures of 2300 K, the activation parameter � = E=RTad � 3:50 for H2-air
and 6.1 to 6.5 for hydrocarbon-air mixtures. Arguments concerning the validity of asymptotic

analysis are made after estimating that � is between 10 to 20 (Clavin 1985). As noted previously,
the perceived values of overall activation energy for equivalent single-step reaction are much
smaller. Although this departure may stil l permit the validity of asymptotic analysis, there needs

to be a demonstration of these aspects. Also, one may �nd that departures are small with regard
to a few aspects, whereas for others, depending on the controll ing phenomena, they are not.

Present Work

In the present work, the linear stability of ames is investigated numerically with particular

reference to a stoichiometric H2-air system by using a single-step �nite reaction model. Two
classes of reaction models, called \model A" and \model B," are treated. Both are �nite
distributed reaction models. Model A is chosen because exact analytical solutions may be

obtained of the steady state (or mean ow as it is called in stability analyses) and is primarily
used to evaluate the e�ects of activation energy. Model B is in the line of classical single-step

reaction models where numerical solutions are needed even for steady state. In this model the
e�ects of variable thermodynamic and transport properties as well as the e�ects of di�usion are
explored in detail . In the single-step reaction, there are four species, namely fuel (i = 1), oxidizer

(i = 2), product (i = 3), and inert (i = 4). If the di�usion is modeled after the trace di�usion
approximation (see Spalding 1957a and 1957b for details), one has four Lewis numbers, Lei , i = 1

to 4, de�ned by Le i = �Dicp=�, where Di is the trace di�usion coe�cient. Instead of letting Lei
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vary through the �eld (something which is easily possible), di�erent di�usion models are chosen
to bring out the e�ects of di�usion explicitly. The �rst of these takes all the Lewis numbers to be

equal to unity. This forms the reference case explored by the other investigators in asymptotic
analysis. The second model takes all the Lewis numbers to be equal to 2.0. This value is chosen

to represent the Lewis number of the hydrogen fuel in the environment of the other species. The
third model takes Le1 = 2 and Lei = 1, i = 2, 3, 4. It is denoted by Lei = 2111. This is chosen
because in a typical hydrogen-air ame, the Lewis numbers for species other than hydrogen are

near unity. In addition, the sensitivity of the results to the accuracy of the steady-state pro�les
is explored.

Basic Equations

The two-dimensional problem is set into an x-y Cartesian coordinate system, with the steady

ame uniform in y and varying along x. A simple step reaction

(Fuel + Oxidizer + Inert)! (Product + Inert)

is assumed. The conservation equations are as follows:

Continuity:
@�
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+
@�u

@x
+
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= 0 (1)
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Energy:
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Species conservation:

� @Yi
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@Yi
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+ �v

@Yi

@y
=

@
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�
Di�

@Yi
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@Yi
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+ _!0 00

i
(i = 1; 2; 3) (5)

�T

M
=

p

R
(6)

where _!000
i

is the reaction rate of ith species. The primes denote the character of volumetric
reaction rate. It is to be noted that for the single-step reaction,

_!0001 =
_!0002
s

= �

_!0003
s+ 1

(7)

where s is the stoichiometric ratio and Di represents the di�usion coe�cients chosen in the

present study to give the Lewis number of the ith species a desired value. The mass fraction of
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the inert species (i = 4) is obtained from the identity that the four mass fractions must sum to
unity. The equation of state assumes that pressure p is constant and is a good approximation

for the stability study as well (Matalon and Matkowsky 1982). The momentum equations ignore
the variation of viscosity in the �eld. This is assumed by noting the already demonstrated weak

e�ects. (See Clavin 1985.) On the other hand, the variation of conductivity is accounted for
because it is known to inuence the stability characteristics signi�cantly. The equations are
nondimensionalized as follows:

x

�f
= �x

y

�f
= �y

tur

�f
= �t

�

�r
= ��

T

Tr
= T

u

ur
= �u

v
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�
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�

�r
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(D�)r
=Di�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(8)

The subscript r refers generally to cold upstream conditions, and �f is the ame thickness chosen
as �f = �r=(�rurcp;r ). This implies that the Reynolds number based on the ame thickness is

Re =
�rur�f
�r

=
�r

�rcp;r
=

1

Pr
(9)

Thus this choice of �f implies that the product of Reynolds number and Prandtl number of

the ame is unity. Another nondimensional number which appears in the equations is Schmidt
number

Sc =
��r

(D�)r

which is set to unity to obtain (D�)r .

Dropping the bars over the symbols gives the following nondimensionalized equations:
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These are the basic equations we need to solve.
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Steady-State Equations

Model A

Asdiscussed earlier, the one-dimensional model utili zes a formalism for which exact analytical
solutions are available. The steady-state energy equation for model A is written as follows:

d2�

dx2
�

d�

dx
= �

hct�f _!
000

�rur(Tad � 1)
(16)

where � = (T � 1)=(Tad � 1) and hct is the nondimensional heat of combustion.

The thermodynamic and transport properties are taken as constant and the Lewis number is
taken as unity. The species conservation equation is eliminated by adding to it the energy

equation and obtaining the result of constant enthalpy through the ame. The continuity
equation reduces to (�u)s = 1, and the momentum equation reduces to p = Constant after
ignoring viscous and inertial terms. The choice of the reaction term is discussed in the section

on solutions.

Model B

For model B the same approximations as for model A are utilized, and the energy equation

is written similarly. The reaction equation and the rate expressions are

2H2 + O2 *) 2H2O (17)

_!000 = Afp
3Y 2

H2
YO2

exp

�
�Ef
RT

�
� AbpY

2
H2O

exp

�
�Eb
RT

�
(18)

The choice of the forward rate constants is discussed later. The backward rate constants are

chosen to be consistent with the equilibrium constant for the reaction of equation (17). The
resulting one-dimensional equations are solved by a code speci�cally developed for the purpose
(Goyal et al. 1988).

Stability Equations

For stability analysis, the independent variables chosen are z = �u; v; p; T; and Yi . The
various quantities are expanded around steady state, denoted by the subscript s, as

�(x; y; t) = �s(x)+ �f(x)�(y; t)

z = zs(x) + zf(x)�(y; t)

u = us(x) + uf(x)�(y; t)

v = 0 + vf(x)�(y; t)

p = ps(x)+ pf(x)�(y; t)

T = Ts(x) + Tf(x)�(y; t)

Yi = Ys;i(x) + Yf;i(x)�(y; t)

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(19)

In equation (19), zs(x) = �us(x) = 1 because at steady state the equation of state gives constant

mass ow through the ame. The disturbance function � is chosen as

� = exp(�i!t+ iky)
�
i=

p
�1
�

(20)

Note that i! = !r + i!i and the sign of !r determines the stability of the ame.
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The stability equations for x-momentum containing uf and us must be expressed in terms of
other quantities. Manipulations of the equation of state and the expression for z give

uf =
Ts

Ms
zf +

Tf
Ms

us =
Ts

Ms

9>>>=
>>>;

(21)

and

�f = �Tf
Ms

T 2
s

(22)

where Ms is the molecular weight variation at steady state. Perturbations of molecular weight
are ignored in the analysis.

Model A

For model A, the following equations for zf; pf ; vf ; and Tf are obtained after the substi-

tution of the expansions into equations (10) through (14) and the subsidiary relationships in
equations (21) and (22) are used:

z0f � ik
vf
Ts

= �i!
Tf

T2s
(23)

p0f � Tsz
00

f +
�
Ts � 2T 0s

�
z0f +

�
k2Ts + T 0s � T 00s

�
zf + J(Ts)T

0

f = i!zf (24)

v00f � v0f � k2vf � ikpf = i
!vf
us

(25)

T 0 0f � T 0f +
h
J(Ts) � k2

i
Tf �

T 0s
Ts

uf = i
!Tf
Ts

(26)

The primes denote derivatives with respect to x. This set of equations constitutes a seventh-
order system. These are solved under conditions of zero values as x ! �1 for all the
variables zf ; pf ; vf ; and Tf . Since the number of boundary conditions is eight, the problem

is overdetermined and has nontrivial solutions for speci�c values of wave number k. Thus the
problem becomes one of eigenvalue.

Model B

For model B, the following perturbation equations for z; v; p; and T are obtained when

equations (19) and (20) are used in equations (10) through (14) and the subsidiary relationships
in equations (21) are also used:

z0f � ik
vf
Ts

= �i!
TfMs

T2s
(27)

p0f � Pr

 
u00f
3
� k2uf + i

k

3
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!
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uf (28)
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3

4Pr
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3

4
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4
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4
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k

4Ms
T 0f � i

kM 0

s

4M2
s
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3

4Pr
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3

4Pr

Ms

Ts
(29)
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Y 00
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1

(Di�)s
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where

�cp = cp;s + Ts
dcp

dTs
(32)

Ji;j =
@ _!000i
@ Yj

Ji;T =
@ _!000i
@T

(33)

It is possible to relate the Jacobians Ji;j and Ji;T by invoking the stoichiometric relations

between the reaction rates (eq. (7)) to obtain

sJ1;j = J2;j � (s + 1)J1;j = J3;j sJ1;T = J2;T � (s+ 1)J1;T = J3;T (34)

In treating the variation of properties, it is assumed that all the dependence of the thermo-
dynamic and transport properties in the ow �eld is described in terms of temperature alone.
This is not entirely correct since there is some dependence of mass fractions of various species as

well . But for premixed mixtures, it is reasonably accurate, certainly at a Lewis number of unity,
where all the properties are described in terms of one progress variable, namely temperature.
For nonunity Lewis numbers, the approximation implies that the extra dependence on mass

fractions is ignored. The equation for pressure is in terms of uf and its derivatives. They can be
expressed in terms of zf and Tf by using relationships in equations (21) to obtain an equation

for pf given by
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T f
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(35)

The primes on various quantities represent derivatives with respect to x. The perturbation
equations require us, derivatives us (up to the second order), �rst derivatives of Ts and Yi, and
Jacobians of reaction rate with respect to T and Yi.

The order of the equations can be reduced further. One should normally solve three species
conservation equations. However, the perturbation on the summation of mass fractions leads to

Y1;f + Y2;f + Y3;f = 0 (36)
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Hence it is su�cient to solve only two of the species conservation equations. The energy and
species equations must be recast with the relationships given in equation (7) to get
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In obtaining these equations, the following equalities obtained from equations (34) have been
used:

J2;2 � J2;3 = s(J1;2 � J1;3) J2;1� J2;3 = s(J1;1 � J1;3) (40)

hct =
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(41)

If the choice of Lewis numbers is such that Le2 = Le3, then the two species equations can be
related by sY2;f = �(s + 1)Y3;f . This equation can be used to reduce the number of species

equations to one and to modify the energy equation. Such a modi�cation gives
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dD1�

dTs

�
T 0

sY
0

1;f �
1

(D1�)s
Y 0

1;szf

+
1

(D1�)s

�f
�rur

J1;T Tf +
1

(D1�)s

dD1�

dTs
Y 0

1;sT
0

f = �i!
Ms

Ts

1

(D1�)s
Y1;f (43)

where
J� = J1;1 + sJ1;2 � (1+ s)J1;3 (44)
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In this case the order of the equation to be solved is 9. If Lei = 1, one can eliminate the equation
for Y1 by combining it with the energy equation. The perturbation equation for enthalpy has

zero for the solution. For this case, (D1�)s =
�s
�cp

and the temperature gradient terms associated

with the transport properties are ignored. In this case the energy equation becomes

T 00

f �

�cp

�s
T 0

f � Tf

�
k2 +

1

�s

�f
�rur

(J� � hctJ1;T )

�
�

�cp

�s

dTs

dx
zf = �i

Ms

Ts

�cp

�s
!Tf (45)

Steady-State Solutions

Model A

Because equation (16) does not have the space coordinate explicitly, it is possible to reduce

the order of the equation by de�ning q = d�
dx (Spalding 1957a and 1957b). One can then recast

the equation as

q

�
dq

d�
� 1

�
= �� _!000 (46)

where � represents the constants on the right-hand side of equation (46). Equation (46) has

been analyzed in combustion literature. The reaction rate expression starts from exponentially
small values near � = 0, peaks at some value of � depending on the activation energy, and

goes to 0 at � = 1. Similarly, q is 0 both at � = 0 and 1 and is positive de�nite over the
range � = 0 to 1 for the adiabatic case considered here. Based on these observations one can
show that, for a class of pro�les q = � � �m, where m is a parameter, one obtains � = 1

and _!000 = m�m(1 � �m�1). Reversing this argument, one can say that for this reaction rate
expression (with m as a parameter), the solution for q is as stated earlier. One can integrate the

equation for q and set out the steady-state solution as

�s = 1 + exp[�(m� 1)x + c]
�

1
m�1 (47)

Ts = �s(Tad � 1)+ 1 (48)

us = Ts (49)

dTs

dx
= (Tad � 1)

d�s

dx
= (Tad � 1)

�
�s � �ms

�
(50)

_!00 0 = m�ms

�
1 � �m�1

s

�
(51)

J =
@ _!000

@T
= (Tad � 1)m2�m�1

s

�
1 �

�
2�

1

m

�
�m�1

�
(52)

In these equations, the steady-state result that (�u)s = 1 along with the equation of state is

used to obtain equation (49). In equation (47), c is chosen so that � = 0:5 at x = 0; this gives

c = log(2m�1
� 1) (53)

These solutions are coded and used in the solution of the stability equations. The choice of c
has no e�ect except on the resolution of the eigen solutions. With the stability code using a
grid distribution which allows a �ner resolution at the center (x = 0) and increasingly coarse

grid at x removed from this point, one expects better resolution by arranging the steady-state
solution in this manner. The stability code util izes its own grid distribution and computes the

various quantities with the analytical expressions noted above. The parameter m characterizes
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essentially the activation energy; that is, m = Constant(E=RTad). Typically values of m � 4
to 6 imply high activation energy and m � 1:3 implies activation energies close to 16 kcal/mole

of a range expected for a H2-air system. This fact is based on the result that the reaction rate
distribution (eq. (51)) has a peak at �s close to 0.5, a feature seen later even with a reaction

rate distribution with � in the case of full chemistry.

Model B

The numerical solutions for the assumed reaction rate for the H2-air system are obtained from

an unsteady code developed for the purpose (Goyal et al. 1988). The code also generates the
Jacobians of reaction rate with respect to temperature and mass fractions of species to be used in

the stability code. These steady-state results are used in the stability calculations for nonunity
Lewis number cases. The steady problem uses a uniform grid in z =

R
� dx. The grid is then

transformed to the coordinate x =
R
dz=�. Then, the results of temperature, mass fractions,

and Jacobians are interpolated with a cubic spline interpolation program into the grid required
by the stability code. The temperature data then are spectrally di�erentiated by a Chebyshev

polynomial �t to obtain the �rst and the second derivatives. These pro�les were found to be
jagged and nonsmooth. Consequently, it was decided to curve �t those data which needed to
be di�erentiated. A Pade polynomial �t was used to describe the temperature distribution with

x, and molecular weight, speci�c heat, conductivities, and di�usivities with temperature. These
were then used in the stability code.

Stability Solutions|Numerical Aspects

The stability code used here was originally written for analyzing the stability of high-speed
ows (Macaraeg, Streett, and Hussaini 1988). The perturbation equations are discretized by

a spectral collocation technique using Chebyshev polynomials as basis functions. The code
utilizes a staggered mesh to treat pressure. The resulting discretized equations are written in a
generalized matrix eigenvalue problem and are solved with the standard library routine. (See

Macaraeg, Streett, and Hussaini 1988.)

Model A

For model A, all the steady-state quantities were known in analytical form, and the
calculations of the stability could be performed in a straightforward manner. The code utilized
a grid stretching with the �nest portion of the grids at x = 0. The region covered is from

�1 to 1. It was therefore necessary to set a value for in�nity. Several initial experiments
suggested that in�nity could be set at x = �15. Sometimes, the eigenfunction could not be

resolved accurately, since the decay was slow; for this reason, in�nity was set at �20 to +20. (It
must be remembered that this x is already nondimensionalized by �f .) Grid resolution studies
were conducted and these showed that the results did not di�er by more than 0.1 percent when

the number of grid points exceeded 121. Most calculations util ized at least 121 grid points. An
interesting aspect of the eigenfunction distribution was that pressure perturbations decayed the
slowest toward the boundaries. Initial concerns regarding the e�ect on accuracy were resolved

when it was determined that enhancing the boundaries and increasing the grid resolution did
not a�ect the critical neutral wave number but altered the eigenfunctions marginally.

Model B

For model B, the range of in�nity and the grid resolution used for model A were found to be
valid. In the numerical results of steady ames, it wasnecessary to de�ne a value of �f . Although

it would be possible to estimate the value from �f = kr=�rurcpr, it was found convenient to
assign a value to �f , and with this value, obtain a consistent set of reference values. It should

be remembered that the critical wave number, a result from the stability code, is actually a
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nondimensional quantity, the nondimensionalizing parameter being �f . One would expect the
physical results obtained to be independent of the choice of �f . This was ensured by varying the

value of � f and obtaining the critical wavelength for each case.

Results and Discussion

Model A

Figure 2 shows the steady-state pro�le of temperature, the �rst gradient, the second gradient,
and the Jacobian. Most of the region of large change is restricted to a region �6 � x � +6.

The Jacobian varies signi�cantly over the �eld, and the variation is di�erent for the activation
energy parameter m = 9 and 2. The variation is larger for m = 9 and smaller for m = 2.
The calculations lead to a set of critical wave numbers (zero growth rate !i = 0) for m, the

activation energy parameter, as shown in table 1. The peaks of the eigenfunctions are shown in
table 1(b) for the unperturbed (U) and the perturbed (P) cases, which are discussed later. It

can be seen from the table that the critical wave number varies from 0.36 at high m to about
0.40 atm � 1:3 corresponding to E � 16 kcal/mole. This constitutes a 10-percent change which
is not considered signi�cant. The eigenfunctions are consistent with results from the asymptotic

analysis. The imaginary part of zf , real part of vf , and imaginary parts of Tf and pf are zero.
The other nonzero eigenfunctions are normalized by the peak of pf .

In studies of stabil ity with strong convection such as mixing or boundary layers, it was
found that the mean pro�le exerts a signi�cant inuence on the stability characteristics. In
order to determine the validity of this statement in the present context and to determine the

features which a�ect stability signi�cantly, subsidiary calculations were performed as follows.
The initial pro�le of T 0s(x) and T 00s (x) was perturbed by a function 4x(x1 � x)=x21 sin 3�

2
x
x1

chosen arbitrarily so that there would be uctuations in the pro�le with zero at the boundaries
x = 0 and x = x1. Figure 3 shows the plots of steady pro�les. As can be seen, pro�les
for both dT=dx and d2T=dx2 have considerable uctuations. Table 1 shows kcrit and peak

amplitudes of eigenfunctions for m = 9 and 2. The wave number kcrit is altered by no more
than 3 percent, and the eigenfunctions are altered somewhat more but less than 10 percent.

There are considerable uctuations in the resulting eigenfunctions, largely those for pressure.
These uctuations do not seem to a�ect the overall result on stability. Thus the errors in
temperature pro�le gradients seem to make little di�erence to the results of stabil ity. The

reason for this is that the instability is largely driven by hydrodynamics and details of the
pro�le do not matter signi�cantly. Figure 4 shows the eigenfunctions for both low and high

activation energies, both perturbed and unperturbed cases. First, consider the unperturbed
case. The structure of the eigenfunctions shows that their width is also from �6 to 6. It is only
the eigenfunction for pressure that seems to decay slowly. For the lower activation energy, the

temperature eigenfunction peak is larger than the pressure eigenfunction. This feature of the
temperature eigenfunction having a peak higher than the pressure eigenfunction is seen in all
the later calculations for model B. Between these unperturbed and perturbed cases the e�ect

of disturbance is less severe for m = 9 than for m = 2. Calculations were made by changing
the Jacobian by 5 percent from the nominal value. This results in a substantial change in the

critical wave number of 20 percent. The features concerning the eigenfunctions look very similar
and seem altered quantitatively to a small extent. Thus the stability is very sensitive to the
Jacobians but quite insensitive to the details of temperature pro�le gradients.

The e�ects of Prandtl number have been discussed by earlier investigators (Clavin 1985) and
were deduced to be insigni�cant. The results of the dependence of the critical wave number

on Prandtl number are presented in table 2. The changes of kcrit near Pr = 1 are marginal.
Only in the extreme case of Pr = 0.05 does the change of kcrit from that of Pr = 1 look

substantial. A study that considered Pr ! 0 was conducted to determine if the viscous terms
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could be neglected altogether. Two calculations were made by dropping the viscous terms in
the momentum equations for u and v separately. Neglecting the viscous terms in the equation

for u for m = 2 leads to a 10-percent reduction of kcrit from 0.391 to 0.356. Neglecting viscous
terms in the equation for v does not lead to an acceptable solution satisfying the boundary

conditions. This situation is inferred to be related to the neglect of the highest order derivatives
in v (v00 term), which is a typical singular perturbation problem. This is why the approach of
obtaining the limiting solution of letting Pr ! 0 by retaining all the derivatives seems to lead

to a physically consistent result.

Model B

Numerical calculations for a steady ame were performed for the stoichiometric H2-air system

with a single step reaction scheme, 2H2 + O2 *) H2O, with frequency factor Af of 1:1 � 1019,

and an activation energy E of 16 kcal/mole. The choice of the parameters was based on the
calculations of the stoichiometric ame structure with full chemistry (Bhashym et al. 1986).

Figure 5 shows the plot of reaction rate of hydrogen with nondimensional temperature from
such a calculation. The peak in the reaction rate occurs at T � 4:2, whereas the adiabatic
temperature corresponds to T = 8:156. For Le = 1, the reaction rate expression becomes a

function depending on temperature alone. Now, one can estimate E (or �) from the plot of
reaction rate with temperature. Such a calculation yields E � 16 kcal/mole. Such estimates are

also available from earlier work (Fenn and Calcote 1953).

The steady ame speeds obtained from the steady-state calculations are 1.63 (Lei = 1), 1.83
(Lei = 2), and 1.70 m/s (Lei = 2111). The case Lei = 2111 implies that the Lewis numbers
for the four species 1, 2, 3, and 4 are 2, 1, 1, and 1. The results of the steady pro�les and

the eigenfunctions for the nominal case are shown in �gure 6. The critical wave numbers for
chosen values of �f are shown in table 3. As can be seen, the critical unstable wavelength is

about 0.9 mm for the classical constant property case. For large activation energy, the critical
wavelength would be about 1.05 mm (not shown in the tables).

The calculations with variable properties show results which are interesting. Variable
properties seem to act as a stabilizing inuence, raising the unstable wavelength to as large

as 1.88 mm. The property variation that has caused the change is deduced from the next two
results. Variable speci�c heat alone seems to slightly destabilize the ame. But conductivity
and di�usivity variation coupled through the Lei = 1 assumption is the most stabilizing feature.

It enhances the stability by a factor of 3. Clavin (1985) invoked the work of Clavin and Garcia
(1983) and has indicated that the variable property e�ects can be taken into account by the use

of thermal di�usivity at the hot condition rather than the unburnt condition. This e�ectively
amounts to taking �f about 2 to 2.5 times higher than that estimated from the use of properties
at unburnt condition. This e�ect then leads to enhanced stability. The results obtained in the

current work are in conformity with the results of Clavin. The details can be understood by
examining the results set out in �gures 7 and 8. As can be seen from these �gures, there are

only weak di�erences in the pro�les of the eigenfunctions, though the critical value of the wave
number is signi�cantly di�erent between the constant and variable property case.

Results of the kind described for model reaction were again established in the present case:
(1) an increase of dT=dx by 1.5 changes the predicted critical wavelength by 2 percent, (2) a

change in d2T=dx2 a�ects the results even less than a change in dT=dx, and (3) an increase
of the Jacobian pro�le by 10 percent causes an increase in critical wave number of 25 percent

(these results are not presented here).

Once the range of in�nity �15 to 15 and the scheme for interpolation were established, the
approach to curve �t the steady-state quantities was abandoned in favor of numerically di�er-

entiating the temperature pro�le and using other interpolated quantities directly. Calculations
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for constant properties turned out to be straightforward and gave the results within 1 percent
of those from the curve �t noted above. The results for these calculations are presented in �g-

ure 8. The second gradient alone seems to have uctuations; but this does not seem to a�ect the
eigenfunctions at all. The calculations for variable speci�c heat turned out to be more di�cult

to perform and needed better resolution. This was accomplished with 151 grid points. (The
CPU times for the calculations of the eigen spectrum and the eigenfunctions on a CRAY-2 super
computer were 71 s for 121 grid points and 120 s for 151 grid points for one case).

Calculations have been made for two cases of nonunity Lewis number. In the �rst case, the

Lewis number of all the species was 2. This corresponds to the conventional approach in which
all Lewis numbers are equal. In the second case, the Lewis number of fuel alone is taken as 2.0

and the Lewis numbers of the other species were set to unity. This follows from the calculations
of H2-air either with full chemistry or single step chemistry with variable properties (see, for
instance, Bhashyam et al. 1986) which show that Lei for H2 is about 2 to 2.5, Lei for others

is between 0.8 to 1.0. The steady-state pro�les of Yi;s versus T and the Jacobians are shown
in �gure 9. The pro�le shapes for Lei = 2 show signi�cant deviations from a linear pro�le.

This is expected from simple analyses of the variation of nondimensional temperature with fuel
mass fraction near a cold boundary (Spalding 1957a and 1957b). The pro�les for Lei = 2111
(Lewis number of various species in order of H2, O2, H2O, N2), however, do not di�er much

from results with Le = 1. The di�erences in the results between Lei = 2111 and Le = 1 are
caused by the di�usion terms. The stability results are summarized in table 4. The critical

wavelength is typically 1.6 to 1.8 mm for the nonunity Lewis number cases. These values are
only slightly smaller than for Le = 1. These observed features are a consequence of the fact that
hydrodynamics controls stabil ity and details of ame structure are less relevant to stability.

Figure 10 shows the plots of the real and imaginary parts of the eigenvalues as a function of

wave number k . It may be noted that !r is less than 0 for the stable range shown in the �gure.
In all the cases except Lei = 2 (with variable properties), the imaginary part (!i) is zero in

the unstable range. The imaginary part being zero implies that the solution gets ampli�ed in a
nonoscillatory manner. The growth of the disturbance in time for any given unstable wavelength
can be estimated from the results of �gure 10. The time for doubling disturbance amplitude can

be obtained from the disturbance equation (eq. (16)) as

t21;s =
0:693

!r(k)

�f
ur

(54)

The time for doubling the amplitude scales like the characteristic time for the ame, with the
coe�cient typically being about 5 to 20. These values are relevant when making a full nonlinear

simulation with a disturbance.

Summary of Results

The problem of the stability of laminar ames, particularly the H2-air system has been
studied. The e�ects of �nite-rate kinetics and variable thermodynamic and transport properties
are explored. The perturbation equations are spectrally discretized and numerically solved

to obtain the eigenvalues and the corresponding eigenfunctions. These calculations show the
following results:

1. The e�ect of �nite activation energy on the critical wavelength is not signi�cant. Reduction

of the activation energy to values corresponding to the H2-air system reduces the critical
wavelength by about 10 percent.

2. Variable transport properties enhance the stability and enhance the critical wavelength by

a factor of 2 to 2.5.
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3. Results for realistic parameters show that the critical unstable wavelength for a stoichio-
metric H2-air mixture is about 1.6{1.8 mm.

NASA Langley Research Center
Hampton, VA 23665-5225
November 19, 1991
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Table 1. Model A

(a) Critical wave number kc rit

kc rit for|

Unperturbed Perturbed

m case case

9 0.362 0.3704

4 0.375 0.382

2 0.391 0.407

1.3 0.401 0.411

(b) Peak amplitudes of eigenfunctions

m Case Re(z) Im(v) Re(T) Re(p)

9 Unperturbed 2.9 17.5 74.0 210.0

9 Perturbed 3.3 19.2 79.1 225.6

2 Unperturbed 8.2 28.1 78.3 58.3

2 Perturbed 9.1 29.3 79.7 62.5

Table 2. Model B

k crit form of|

Pr 9 2

1.0 0.391 0.362

0.7 0.377 0.374

0.1 0.305 0.331

0.05 0.300 0.301

Table 3. Model B for Lei = 1 and � = 3.5

(a) Critical wave number kc rit and �f

�f, Wavelength,

Case k crit mm 2��f=kc rit, mm

Constant properties 0.42 0.06 0.9

Variable properties 0.20 0.06 1.88

Variable cp 0.43 0.06 0.88

Variable � and D� 0.18 0.06 2.09

(b) Peak amplitudes of eigenfunctions

Case Re(z) Im(v) Re(T) Re(p)

Constant properties 10.0 26.0 83.8 64.5

Variable properties 8.0 25.0 74.4 66.5

Table 4. Model B for Lei = 2 and 2111

(a) Critical wave number kc rit and � f

� f, Wavelength,

Case Le i kc rit mm 2�� f=kc rit, mm

Constant properties 2 0.50 0.06 0.75

Variable properties 2 0.24 0.06 1.57

Constant properties 2111 0.48 0.06 0.785

Variable properties 2111 0.21 0.06 1.79

(b) Peak amplitudes of eigenfunctions

Case Lei Re(z) Im(v) Re(T) Re(p)

Constant properties 2 9.5 23.0 86.4 60.4

Variable properties 2 6.2 21.0 84.4 64.5
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